

On the Verification of Formal Methods for Digital Embedded Control Systems

Dr. Dimitri Kagaris Dr. Spyros Tragoudas Ehsan Ahmadi

Project Overview

Modelling and checking of specifications and requirements

Specifications and requirements are constantly being changed/refined as a project is developed.

Fundamental Problem: identify conflicts/incompatibilities

Approach:

- □ Part 1: Translate from Semi-formal Description
- Part 2: Investigate the capabilities of the Z3 SMT solver
- Part 3: Develop an incremental approach and compare with static.

Translate from Semi-Formal description

• Ideally, requirements should be

Loosely described

Strictly checked

To help bridge this gap, we propose to develop a tool that can translate from a "semi-formal" description of requirements to the extremely formal description that a theorem prover/solver needs.

Translate from Semi-Formal description

R1: [Average Main Frequency] shall be an average of the last 3 readings of [In XMS Frequency].

- R2: [Main Power OverFrequency Condition] shall be set TRUE when [Average Main Frequency] is greater than 125Hz else it is set to FALSE.
- R3: [Main Power OverFrequency Fault] shall be set TRUE when [Main Power OverFrequency Condition] is set to TRUE for 1 Second else it is set to FALSE.
- R4: [Monitor Fault] shall be set TRUE when any of the following exist else it is set to FALSE:

[UnderFequency Fault] is set to TRUE. [OverFequency Fault] is set to TRUE. [OverCurrent Fault] is set to TRUE. [UnderVoltage Fault] is set to TRUE. [OverVoltage Fault] is set to TRUE.

R5: [Out XRM Close] shall be set TRUE when all of the following exist:

[Good Power] is set to TRUE.

[In XPOS] is set to FALSE.

[Monitor Fault] is set to FALSE.

Translate from Semi-Formal description

- (1) Extract variables
- (2) Check for variable naming inconsistencies
- (3) Handle the type and values of variables (logical or arithmetic);
- (4) Recognize "any" and "all" requirements;
- (5) Handle the occurrence of composite operations like "average";
- (6) Handle timing durations (such as "TRUE for 1 Sec")
- (7) Check for misspellings/alternatives

Translate to Formal description

- R1: = _AverageMainFrequency_ = (_InXMSFrequency_(t)_ + _InXMSFrequency_(t-1)_ + _InXMSFrequency_(t-2)_) / 3
- R2: = _MainPowerOverFrequencyCondition_ = (_AverageMainFrequency_ > 125 Hz)
- R3: = _MainPowerOverFrequencyFault_ = (_MainPowerOverFrequencyCondition_ AND (_DURATION_MainPowerOverFrequencyCondition_ = 1 Sec))
- R4: = _MonitorFault_ = _UnderFequencyFault_ OR _OverFequencyFault_ OR _OverCurrentFault_ OR _UnderVoltageFault_ OR _OverVoltageFault_
- R5: = _OutXRMClose_ = _GoodPower_ AND ~_InXPOS_ AND ~_MonitorFault_

Incremental Verification/Consistency Check

Example:

OLD REQUIREMENTS:

(0 < A < 8), (0 < B < 8),(A + B)/2 < 3

NEW REQUIREMENT:

(2 < A < 8) & (0 < B < 4)

REQUIREMENT 2: set of satisfiable answers:

•(A=3, B=1) (A=3, B=2) (A=3, B=3)

•(A=4, B=1) (A=4, B=2) (A=4, B=3)

•(A=5, B=1) (A=5, B=2) (A=5, B=3)

•(A=6, B=1) (A=6, B=2) (A=6, B=3)

•(A=7, B=1) (A=7, B=2) (A=7, B=3)

For first answer: (A = 3, B = 1) A = 0011, B = 01 \rightarrow related function = $\overline{a_3} \ \overline{a_2} \ a_1 a_0 \overline{b_1} b_0$

For another answer: (A = 6, B = 2) A = 0110, B = 10 \rightarrow related function = $\overline{a_3} a_2 a_1 \overline{a_0} b_1 \overline{b_0}$

• We make binary decision diagram of the functions related to all the satisfiable for first answer.

11

BDD for OLD Requirements
(0 < A < 8), (0 < B < 8),
(A + B)/2 < 3

A) A1	A2	A3	BO	B1	B 2	B 3
() .	8	1	9	1	8		•
() .	1		9	1	1	-	•
1	8		9	2	i (1	•
1	1	a.	ж.	ž	1	•	•

12

BDD for NEW Requirement
(2 < A < 8) & (0 < B < 4)

AO	Al	A2	A3	B0	B1	B2	B 3
8 8	1	1	(iè	æ	1	æ	23
80 I	-	1	i.	æ	1	9	23
80 I	1	1		1	1	92	22
* 0	1	1).	1	9	9	2
80 I	-	1		1	1	9	23
80 I	-	1		1	8	9	22
1		1	i.	÷	1	9	23
1	-	1		1	1	9	22
1	-3	1		1	8	9	23
1	1	1	i.	e.	1	9	2
1	1	•		3	1	92	28
1	1	1	() .	1	1	9	2
1	1	1		1	9	9	
1	1	•		1	1	9	2
1	1		() i	1	8	ж.	22

Project Status

• Satisfiability Modulo Theories (SMT) solver Z3

Set of input requirements: Logic and Arithmetic

eg. R1: (A > 100) & (A < 10) & (B \leq 10)) R2: (A+B)/2 < 80)

•Script to translate in Z3

- •Script to generate solution space
- •Build BDD

•BDD intersection and merging

Project Tasks/ Deliverables

	Description	Date	Status
1	Exploration of the capabilities of Z3 SMT solver. Script for translation into Z3 format	Q1	DONE
2	Script for generation of solution space BDD derivation and merging operations	Q2	In process
3	Extensive experimentation for scalability analysis	Q3, Q4	Not yet started

Deliverables:

- Methodology for automatic verification/validation/consistency check of a large amount of formal requirements.
- Application of the approach on industrial case studies.