

Supporting Smart Machine Communication with Private LTE Network

Kang Chen and Gayan Aruma Baduge Southern Illinois University

Project Overview and Description

- Smart machine is an emerging domain
 - Sense and interact for collaborative and intelligent manufacturing and producing
 - Connected vehicle, automated mining, etc.
- Wireless communication is a key
 - Machine to machine & machine to infrastructure
 - Many technologies (e.g., WiFi) with different limitations
- How can private LTE contribute?
 - Capability: throughput, QoS, security, management, etc.
 - Any innovations needed?

Approach

- Investigate the performance of private LTE network in supporting smart machines
 - Field measurement
 - Identify application scenarios
 - Varying various parameters, e.g., data rate and density
 - Theoretical analysis
 - Further validate measurement result
 - Performance enhancement
 - Algorithm design and network structure innovation
- Outcomes
 - Promoting the application domain of private LTE
 - Promoting the transition to smart machines

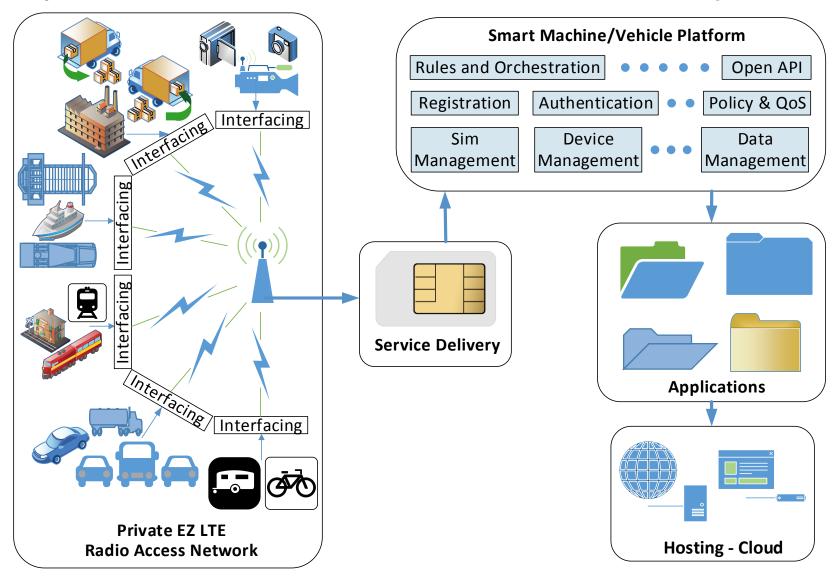
Project Tasks/ Deliverables

	Description	Date	Status
1	Identify representative application scenarios	Aug. 2016	
2	Design and build a testbed with private LTE equipment and client devices	Sep. 2016	
3	Design and conduct field measurement	Nov. 2016	
4	Conclude measurement results	Feb. 2017	
5	Validate measurement results through theoretical analysis	Mar 2017	
6	Performance enhancement with algorithm design and network structure innovation	April 2017	

Executive Summary

Smart machine is promising

- Automated X (driving, manufacture, mining)
- Smart X (city, industry, grid)


Private LTE

- As powerful as commercial LTE network
- As flexible and agile as a private network

• System Architecture: Smart machine & Vehicle framework over private LTE

Smart machine

- Vast amount of application scenarios: utilities, logistic, mining, manufacturing, healthcare, etc.
- Diverse requirements on the underlying wireless networks including security, mobility, bandwidth, reliability, and QoS
- Raise an important question about how to design a suitable wireless network for smart machines

Wireless communication techniques

- WiFi: limited coverage, limited QoS, limited security

- Zigbee: limited coverage, limited bandwidth
- WiMAX: wide area mobile broadband service but a mainstream standard.
- LTE: wide area mobile broadband service, major standard today and on the evolution map of 5G

Private LTE

- LTE is good but needs dedicated spectrum, which often is owned by major carriers
- Carrier owned LTE network is not flexible to use in industry scenarios
- Opening up of 3.65 GHz CBS band removes this barrier

Field Measurement

- Delay: the distribution of packet delays in both crowd and sparse scenarios.
- Throughput: the throughput a machine can achieve in both crowd and sparse scenarios.
- QoS support: measure the delay of and throughput of nodes under different QoS configurations. This measurement tries to answer what guarantee can the private LTE network offer?
- Handoff under mobility: measure the delay, throughput, and packet loss probability when a machine moves from one base station to another base station.

Theoretical analysis

- Learn the techniques used in LTE
- Modeling the measurement scenario
- Deducing the theoretical performance under the measurement scenario
- Check the validity of the measurement results

Performance enhancement

- Compare application needs and measurement results
- Identify challenges
- Design new algorithms to solve the gap
- Example:
 - Guarantee the packet delivery probability under the handoff scenario