

On the Verification of Formal Methods for Digital Embedded Control Systems

Dr. Dimitri Kagaris Dr. Spyros Tragoudas SIUC

Ira A. Fulton Schools of Engineering

Project Overview and Description

<u>Modelling and checking of</u> <u>specifications and requirements</u>

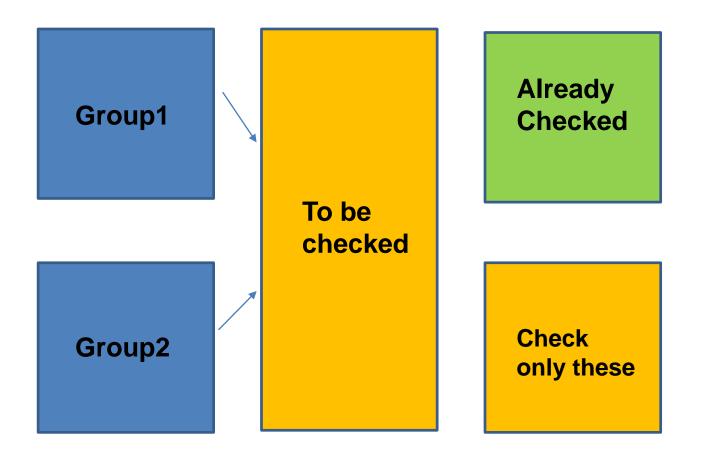
(i) specifications and requirements are constantly being changed/refined at least in the initial design phases;

(ii) conflicts/incompatibilities in the design can be found at an earlier stage;

(iii) reliability, performance and quality assurance standards are maintained throughout the design development

Problem

Amount of requirements can be huge. How to cope with the capabilities of existing solvers/checkers.


- ABsolver
- Prover9 / Mace4
 - MathSAT
 - Alt-Ergo
 - SNARK
 - PVS
 - TPS
 - Vampire
 - E
 - veriT
 - Z3

Approach

- Start from formal specification of requirements of a digital embedded control system (such as VDM, Z, SPARK)
- Investigate Existing Theorem Provers/Solvers/Checkers
- Develop procedures to make consistency check more scalable.
- Check the scalability on industrial case studies (avionics, automotive applications).

Incremental Verification/Consistency Check

Novelty

Formal design verification/consistency check is not well studied in terms of scalability.

This project will provide methodologies and results on specific industrial cases.

Project Tasks/ Deliverables

	Description	Date	Status
1	Exploration of the capabilities of existing theorem provers/ solvers that can work in conjunction with Formal Methods.	Q1	Not yet started
2	(Same as 1)	Q2	Not yet started
3	Development of scalable procedures.	Q3	Not yet started
4	Extensive experimentation for scalability analysis.	Q4	Not yet started

Deliverables:

- Methodology for automatic verification/validation/consistency check of a large amount of formal requirements.
- Application of the approach on industrial case studies.