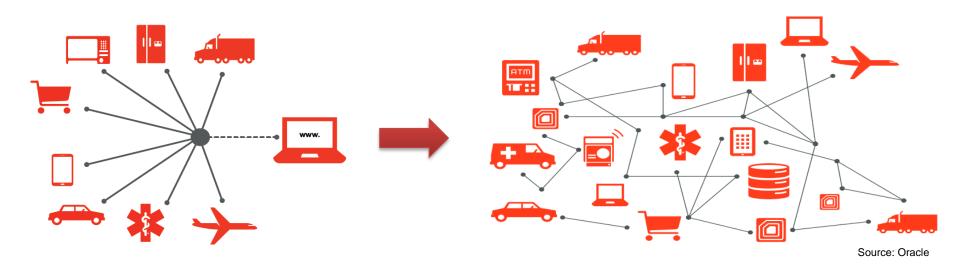
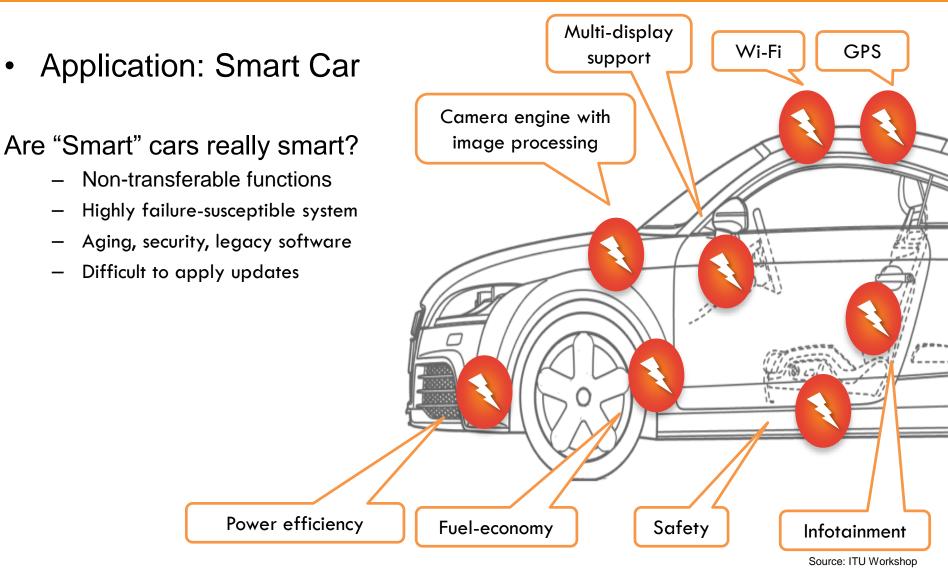


Distributed run-time management for multi-agent system

Iraklis Anagnostopoulos, **Southern Illinois University**




Ira A. Fulton Schools of Engineering ARIZONA STATE UNIVERSITY

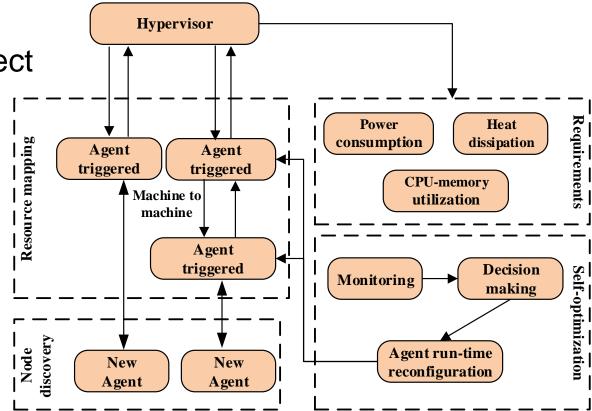
Project Overview and Description

- By 2020 16B dynamic-networked devices will be deployed
 - Increased complexity
 - Increase error probability
 - Node management and connectivity
- Necessity for distributed run-time management

Project Overview and Description

Approach

- Propose a distributed framework for run-time management of multi-agent systems
 - Distributed agents
 - Self-optimization
 - Node discovery
 - Resource mapping by hypervisors
- Novelty and benefits:
 - Couple run-time services in a distributed way
 - Respect system requirements
 - Self-managed system functionality
 - the concept of multi-agent systems in modern automotive environment will be integrated and tested


Project Tasks/ Deliverables

	Description	Date
1	Study of existing techniques and selection of the appropriate methodologies-algorithms	12/2015
2	Define architecture and hardware specifications for hypervisor and agents	4/2016
3	Comprehensive report about the implemented algorithms and techniques for distributed multi-agent systems	8/2016
4	Demo with interconnected physical boards (e.g. beagleboard, raspberry pi over ethernet) of a simple scenario	8/2016

Executive Summary

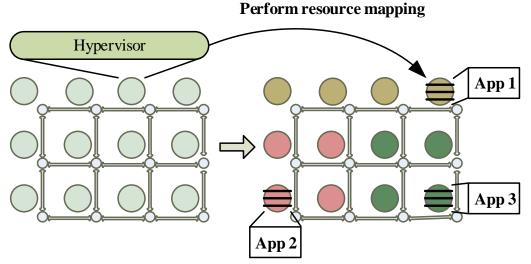
Distributed run-time management

- Hypervisors
- Requirements respect
- Resource mapping
- Node discovery
- Self-optimization

REMAINING SLIDES For poster session ONLY (as many as you'd like) TECHNICAL DETAIL

ECU classification

Hypervisors


- Handles all the unoccupied ECUs
- Checks some of system's requirements
- Communicates with agents
- Monitoring
- They are not the center of communication
- Agents
 - Task/Application execution
 - Self-optimization process
 - Respect system requirements
 - Self-managed system functionality

Run-time management

- RT Linux kernel
 - Deploy on raspberry pi
 - Embedded linux OS Hypervisor N-1 is the agent with the highest agent id controlled by hypervisor 0. Agent Agent k Agent 1 N-1 Pid_num[1] =getpid(); Pid_num[k] =getpid(); Pid num[N-1] =getpid();

Distributed run-time management

• Divide& Conquer

Anagnostopoulos, I.; Bartzas, A.; Kathareios, G.; Soudris, D., "A divide and conquer based distributed run-time mapping methodology for many-core platforms," Design, Automation & Test in Europe Conference & Exhibition (DATE), 2012, vol., no., pp.111,116, 12-16 March 2012

- Monitoring
 - Code instrumentation
 - Local statistics \rightarrow Workload prediction
 - Decision making