Group 1

1.5 Towards Predictable Execution of Safety-Critical Tasks on Mixed-criticality Multi-core Platforms, Pis: D. Kagaris, H. Ramaprasad, SIUC

Towards Predictable Execution of Safety-Critical Tasks on Mixed-Criticality Multi-Core Platforms.

Ira A. Fulton

ARIZONA STATE UNIVERSITY

Schools of Engineering

Dimitri Kagaris Harini Ramaprasad

Students: Ashish Choudhari Aishwarya Vasu

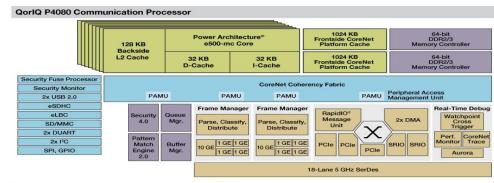
Southern Illinois University Carbondale

Center for Embedded

Project Queriview and Description

- Integrate independent High-Safety Sensitive (HSS) and Low-Safety Sensitive (LSS) applications onto one physical computing platform
- Cost and space effective integration
- Characterize HSS behavior in presence of LSS tasks
- Develop cache locking and message passing policies
- Problem
 - Deterministic execution of HSS in the presence of LSS tasks and other HSS tasks is challenging
- Feasible Solution
 - Use modern virtualization (hypervisor) technology to isolate HSS and LSS application on a multi-core platform
 - Use cache locking for HSS tasks for predictable execution times
- Applications
 - Integrate multiple avionics modules in a "single box"

Approach • Stage 1:


- - Use cache locking and partitioning to improve predictability of HSS tasks
 - Explore applicability of *minimum utilization* and *minimize interference* policies to end-use scenarios
- Stage 2:
 - Allow one partition to be a "manager" that can pause, stop, resume other partitions
 - Dynamically control LSS tasks resource usage during overload situations
 - Efficient power/energy conservation
- Metrics for measuring success of techniques
 - HSS tasks: Determinism
 - LSS tasks: Quality-Of-Service (QoS)
- Novelty
 - No existing research on mixed criticality execution in virtualized environments on P4080 platform
- Potential member company benefits
 - Provide basis for safe execution of mixed-criticality workloads on multi-core architectures with support for virtualization

Project Tasks/ Deliverables

	Description	Date	Status
1	Exploration of existing research in the area of cache locking and partitioning.	Q1	Complete
2	Workload characterization and end-use scenario analysis under cache locking and partitioning schemes.	Q2	Ongoing
3	Exploration of mechanisms to create and configure manager partitions;	Q3	Ongoing
4	Development of strategies for dynamic resource management using manager partitions	Q3	Not yet started
5	Report writing and technology transfer	Q4	Not yet started

Freescale QorlQ P4080 Technischigh-perior accelerores

- Private L1 & L2 caches
- Shared L3 cache

Core Complex (CPU, L2 and Frontside CoreNet Platform Cache)
Basic Peripherals and Interconnec
Accelerators and Memory Control
Networking Elements

- Embedded hypervisor
 - Safe OS partitioning
 - Takes advantage of hardware mechanisms present in cores
 - Provides support for partitioning cores, memory, I/O devices
 - •Each OS only accesses resources it is authorized to access
 - •Each OS owns resources in its partition
 - •Partitions are static
 - Can configure one partition as "manager partition"
 - External interrupts may be directly sent to Oss
- High-bandwidth communication & coherence infrastructure