Group 1

1.1Multi-core Simulator using GPGPU Platforms, PI: S. Tragoudas, SIUC

Multi-Core Simulator Using GPGPU Platforms

Dr. Tragoudas, SIU

Luke Pierce, Daniel Olsen, Garret Kaiser

Current Simulator Based Multi-Core Simulator

Project Overview and Description Insufficient Computation Powerfor Real-Time Simulation when:

- Multiple Streams
- High Definition Streams
- Migrate Processing of Data to GPGPU Environment
 - Increases available cores
 - SIMD Focus

Approach

- Leverage existing simulator
- Use GPGPU platform to reduce execution time
 - Run threads as GPGPU threads
 - Selectively off-load processing to GPGPU
- Allows for quick design exploration of multicore hardware
- Allows for verification of parallel algorithms

Project Tasks/ Deliverables

	Description	Date
1	Select GPGPU Platform	9/30/2014
2	Migrate Multi-Core Tool to GPGPU	2/28/2015
3	Performance Analysis Using Image Processing Algorithms	4/30/2015
4	Transfer Multi-Core Tool and Documentation	7/31/2015

Exectuditive & Unaline and Hardware Simulator

- Configurable core arrays
- Measures performance characteristics of inputted software algorithms
- Migration to GPGPU
 - Increase simulator throughput
 - Greater support for realtime simulation

MULTIPLE CORES

GPU THOUSANDS OF CORES