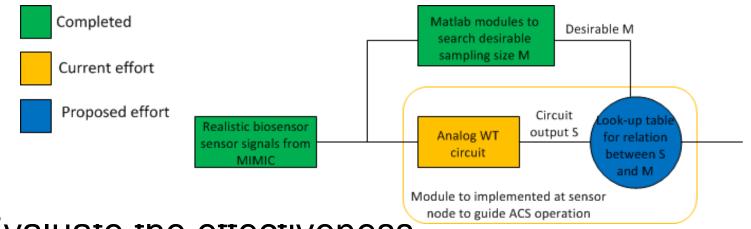
Group 3

3.6 Adaptive Compressive Sensing Techniques for Low Power Sensors, Pis: H. Wang, S. Tragoudas, SIUC

Adaptive compressive sensing techniques for low power sensors

Pls: Haibo Wang and Spyros Tragoudas Students: Naresh Mudhireddy, and Adam Watkins

Dept. of ECE Southern Illinois University Carbondale



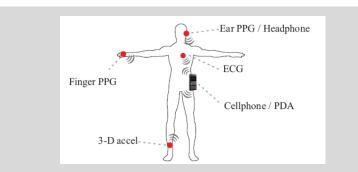
Projectropacenter and Description

- Early phase of the project indicates adaptive compressive sensing (ACS) is an attractive power saving technique for lowpower biomedical sensors; **The proposed efforts investigate circuit techniques to implement ACS at sensor nodes**
- Specific problem to be addressed:
 - How does a *simple* sensor node decide *when* and *how* to adjust sampling size in ACS
- Proposed Solution:
 - Using *low-power & low-accuracy* analog wavelet transform circuit to monitor signal sparsity variations
- Target Applications:
 - Low-power biomedical sensors that form a body area network and communicate with mobile devices, such as smartphones.

Approbetelop the proposed circuit using a 0.13µ CMOS technology

• Establish the relation between circuit output and desirable sampling size M

- Evaluate the effectiveness
- Demonstrate power savings by system-level simulation (ACS sensor power estimator being developed in the current efforts will be used in this task)


Project Status Study of Signal sparsity fluctuation is completed. It shows the validity of adaptive compressive sensing

- The investigation on potential power savings is complete. It indicates significant power can be saved by ACS
- Matlab simulation package for checking the applicability of ACS and potential power saving is available for member companies
- Current work focuses on the design of analog circuits to be used in ACS

Project Tasks/ Deliverables

		Description	Date	Status
1		Select a set of wavelet functions to be implemented	10/14	
2	2	Obtain stable transfer function and start analog WT circuit development work	01/15	
3	3	Complete the development of analog WT circuits	04/15	
2	4	Establish the relation between analog WT circuit output and signal sparsity	06/15	
5	5	Investigate the effectiveness of the proposed approach	07/15	

- EXected trip/essNel tenging is/emerging as a new technique in ultra-low power sensor design.
 - Adaptive compressive sensing can potentially result in further power saving.
 - The project investigates the need, benefits, and circuit techniques to implement adaptive compressive sensing schemes
 - An interesting application area of the developed technique is in the design of biosensors that are parts of body area network and communicating with mobile devices

Source: Baheti, P.K.; Garudadri, H.; "An ultra-low power pulse oximeter sensor based on compressed sensing," Sixth International Workshop on Wearable and Implantable Body Sensor Networks, pp. 144-148, 2009.