

### Towards Predictable Execution of Safety-Critical Tasks on Mixed-Criticality Multi-Core Platforms.

Dr. Dimitri Kagaris Sourav Dutta Sheeheeda Manakadu SIU Carbondale







# **Project Overview and Description**

#### Project Description

- Integrate independent High-Safety Sensitive (HSS) and Low-Safety Sensitive (LSS) applications onto one physical computing platform
- Characterize HSS behavior in presence of LSS tasks
- Develop policies to execute HSS applications in a deterministic fashion
- Problem
  - Deterministic predictable execution of HSS in the presence of LSS tasks
- Feasible Solution
  - Use modern virtualization (hypervisor) technology to isolate HSS and LSS application on a multi-core platform
  - Use shared resource isolation for HSS tasks for predictable execution times
- Applications
  - Integrate multiple avionics modules in a "single box"
  - Investigation on Freescale P4080 paltform



#### Configurations

- Agents: Hypervisor (H) General Purpose System(GP) Real-time System (RT)
- Partitions :







• <u>L3 Cache</u>: 32 ways

| 0  |   | 0  | 0 | 32 |
|----|---|----|---|----|
| 8  |   | 4  | 0 | 28 |
| 0  |   | 8  | 0 | 24 |
| 16 |   | 16 | 0 | 16 |
| 24 |   | 32 | 0 | 0  |
| 32 |   | 6  | 4 | 22 |
|    |   | 8  | 4 | 20 |
|    | I | 12 | 6 | 14 |

• <u>Workloads:</u> Matrix Multiplication, Random Memory Reads, Sorting.

0

# **Project Status**

- Isolation of Physical Memory Area (PMA) for each partitions.
- Examined the effect on RT under different configuration of partitions/L3 Cache.
- Studied the effect of the Hypervisor overhead and identified the "Bell Effect".









Execution Time(s) of Random Reads under Three Partitions



# **Project Tasks/ Deliverables**

|   | Description                                                                         | Date      | Status |
|---|-------------------------------------------------------------------------------------|-----------|--------|
| 1 | Isolation of Physical Memory Area (PMA) for Hypervisor, GPOS and RTOS.              | Fall 14   |        |
| 2 | Extensive Experimentation with multidimensional configurations.                     | Fall 14   |        |
| 3 | Identification of the Bell shaped behavior.                                         | Fall 14   |        |
| 4 | Additional Experimentation on configurations (multiple dimensions).                 | Spring 15 |        |
| 5 | Effects of Memory-Intensive and Processor-intensive GP applications on the RT side. | Spring 15 |        |
| 6 | Effect of Number of cores assigned to each partition.                               | Spring 15 |        |

### **Bell Effect**

# The Hypervisor needs a sufficient amount of cache for the RT to run at its best.

#### Execution Time(S) of Matrix Multiplication under Three Partitions



### **Bell Effect 2**

#### Execution Time(s) of Random Reads under Three Partitions



### **Effect of shared Bus Bandwidth**

GP: Stride\_1024; RT : Stride\_1 (Two Partitions)



Cache effects on P4080



#### Best: HG30\_R2

### **Effect of shared Bus Bandwidth**



#### Best: HG6\_R26 H needs 4 !

#### Effect of number of partitions on Hypervisor overhead

Two Partitions GP: No program; RT: Stride\_1024





#### Effect of number of partitions on Hypervisor overhead

