
Background Invariant Laser-spot Detection and Tracking for Embedded Systems

PI: Lalit Gupta, Ph.D Professor, ECE, SIUC Student: Yang Bai, Ph.D student, SIUC

Matthew M. Wilding, Ph.D Steven Koenck Rockwell Collins

Project Overview and Description

PROJECT DESCRIPTION

Develop a methodology to accurately detect laser-spots in lowresolution images and to track the laser-spot in varying background and illumination conditions

•Applications:

- Smart Munitions: Targeting, Guiding, Counter-measure
- Robotics: Navigation

http://www.popularmechanics.com/technology/military/research/8-laser-weapon-systems

Approach

APPROACH

•Detection: Filtering, Segmentation, Feature extraction, Classification

•Tracking: Kalman filter, Particle filter

- •Initial Focus: Static and simple backgrounds.
- •Subsequent Efforts: Dynamic and noisy backgrounds.

•Final goal: Embed the detection and tracking strategy into a multi-core processing architecture

NOVELTY

•Unique problem, unique formulation

Potential member company benefits

•Numerous possible applications

Project Status

Progress to date

- Acquired laser spots in varying backgrounds
- Developed Intensity based segmentation
- Implemented Kalman Filter/ Particle filter
- Results: video

Project Tasks/ Deliverables

	Description	Date	Status
1	Study characteristics of laser-spots in varying backgrounds		Ongoing
2	Develop laser-spot detection algorithms		Ongoing
3	Develop laser-tracking algorithms		Ongoing
4	Test detection and tracking algorithms in simple backgrounds		Ongoing
5	Test detection and tracking algorithms in complex backgrounds including missing objects in frames		
6	Embed the detection and tracking strategy into a multi-core processing architecture		

Executive Summary

Develop method to

- Detect and track laser-spots

Applications

- Military
- Robotics
- New applications
- Approach

<u>Detection</u>: Filtering, Segmentation, Object extraction

<u>Tracking</u>: Kalman filter, Particle filter

http://www.fastcompany.com/welcome.html?destination=http://www.fastcompany.com/1823017/darpa-unveils-drone-slaying-war-laser

Detection

- •Filtering: Min filter, Gaussian filter, median filter
- •Segmentation: adjacent frame difference

•Object extraction: combine optical flow and mean shift/frame difference

>optical flow: assume intensity of objects do not change over time and objects move slowly.

$$I(x, y, t) = I(x + \Delta x, y + \Delta y, t + \Delta t)$$
$$I_x V_x + I_y V_y = -I_t$$

>Mean shift:

$$m(x) = \frac{\sum_{x_i \in N(x)} K(x_i - x) x_i}{\sum_{x_i \in N(x)} K(x_i - x)}$$

Tracking

Dynamic system model:

$$x_{k+1} = f(x_k) + w_k$$
$$z_k = h(x_k) + v_k$$

X_k: target state;

z_k: measurement;

f: state transition function;

h: state-to-measurement function;

w_k: state transition noise;

v_k: measurement noise.

Q: covariance matrix of w_k

R: covariance matrix of v_k

Kalman filter: recursively predict new state x_k

Prediction step:

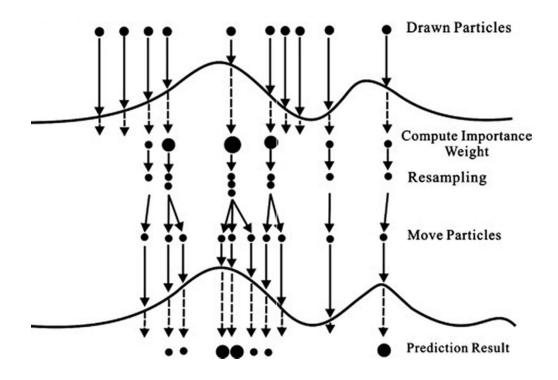
$$\hat{x}_{k}^{-} = f(\hat{x}_{k-1})$$

$$P_{k}^{-} = AP_{k-1}A^{T} + Q$$

$$A \equiv \frac{\partial f}{\partial x}\Big|_{\hat{x}_{k}}$$

 P_k : error covariance

Correction step:


$$K_{k} = P_{k}^{-}H^{T} \left(HP_{k}^{-}H^{T} + R\right)^{-1}$$
$$\hat{x}_{k} = \hat{x}_{k}^{-} + K_{k} \left(z_{k} - h(\hat{x}_{k}^{-})\right)$$
$$P_{k} = P_{k}^{-} - K_{k}HP_{k}^{-}$$
$$H = \frac{\partial h}{\partial x}\Big|_{\hat{x}_{k}^{-}}$$

Particle filter: for more general non-Gaussian states

Target distribution f : $p(x | z_1, z_2, ..., z_n) = \frac{\prod_k p(z_k | x) p(x)}{p(z_1, z_2, ..., z_n)}$

Sampling distribution g :
$$p(x | z_l) = \frac{p(z_l | x)p(x)}{p(z_l)}$$

Importance weights w:
$$\frac{f}{g} = \frac{p(x \mid z_1, z_2, ..., z_n)}{p(x \mid z_l)} = \frac{p(z_l) \prod_{k \neq l} p(z_k \mid x)}{p(z_1, z_2, ..., z_n)}$$

Particle filter algorithm

11

Current Results

 Detect one laser spot in stationary and very slow moving backgrounds

•Track one missing spot in stationary and very slow moving backgrounds

Future Work

 Detect multiple spots in stationary and very slow moving backgrounds

- •Track missing spots in stationary and very slow moving backgrounds
- •Detect multiple spots in dynamic backgrounds
- •Track missing spots in dynamic backgrounds