

Towards Predictable Execution of Safety-Critical Tasks on Mixed-Criticality Multi-Core Platforms

PIs: Harini Ramaprasad Dimitri Kagaris

Southern Illinois University Carbondale

Project Overview and Description

Problem

• Deterministic execution of HSS tasks in presence of LSS ones on multi-core architectures is challenging.

Viable Solution

- Virtualization (hypervisor) for isolation of HSS & LSS task sets
- Cache-locking and partitioning for improved predictability

Applications

• Integrate multiple avionics modules in single box

Project Description

- Conduct trade-off study of *determinism* vs *performance* of mixed-criticality tasks on Freescale P4080 multi-core platform
- Develop policies to maintain responsiveness of HSS applications under regular and overload conditions

Approach

- Two stages
 - Stage 1: a) Use cache locking and partitioning to improve predictability of HSS tasks; b) Identify/develop suitable policies to apply to end-user scenarios.
 - Stage 2: Explore the use of manager partition to dynamically control resource usage of LSS tasks under overload or unexpected situations
- Metrics for measuring success of techniques
 - HSS tasks: determinism (satisfaction of timing and precedence constraints
 - LSS tasks: Quality-of-Service (QoS)
- Benefit to member companies
 - Integration on Multicore \rightarrow save space and cost
 - Use of hypervisor → Safe execution of mixed-criticality workloads

Project Tasks/ Deliverables

	Description	Date	Status
1	Exploration of existing research in the area of cache locking and partitioning.	Q1	Not yet started
2	Workload characterization and end-use scenario analysis under cache locking and partitioning schemes.	Q2	Not yet started
3	Exploration of mechanisms to create and configure manager partitions;	Q3	Not yet started
4	Development of strategies for dynamic resource management using manager partitions	Q3	Not yet started
5	Report writing and technology transfer	Q4	Not yet started

Technical Detail

• Freescale QorlQ P4080

- 8 high-performance cores
- Private L1 & L2, shared L3
- Embedded hypervisor

•Provides support for safe *partitioning* of cores, memory, I/O devices

•Can configure one partition as "manager partition"

High-bandwidth communication & coherence infrastructure
Support for prioritization, bandwidth allocation, packet-level queue management and QoS scheduling

Hypervisor design

•Exploits hardware mechanisms in cores to improve efficiency of virtualization

Easier to bound hypervisor interference across OSs