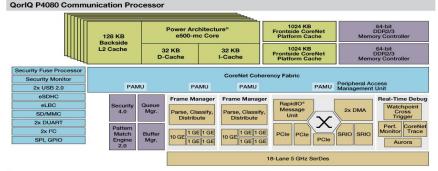

Multi-Partitioned Single Cores and Predictable Execution of Safety-Critical Tasks

PIS: Dimitri Kagaris Harini Ramaprasad

Southern Illinois University Carbondale

Project Overview and Description

- Motivation
 - Single partition/module on a core may not fully utilize core resources
 - Deploy multiple partitions on single core
- Problem
 - Deterministic execution of HSS tasks in presence of LSS ones is challenging when executed in multiple partitions on single core
- Viable Solution
 - Virtualization for isolation of HSS & LSS task sets on same core
- Application \rightarrow Mechanism for Integrated modular avionics
- Project Description
 - Characterize interference between HSS and LSS tasks running under the same or different partitions on a single core
 - Develop dynamic partition scheduling algorithms → ensure HSS requirements and provide better Quality-of-Service for LSS tasks


Approach

- Two-stage approach
 - **Stage 1:** Explore interference between HSS and LSS tasks executing within one OS, with emphasis on determinism and responsiveness of HSS tasks and QoS of LSS tasks.
 - **Stage 2:** Explore interference between tasks executing in different OSs (e.g., a real-time and general purpose OS) running on a single core with hypervisor support and study the behavior of the OSs in each case.
- Metrics for measuring success of partition scheduling algorithm
 - HSS tasks: determinism of execution (satisfaction of timing and precedence constraints
 - LSS tasks: Quality-of-Service (QoS), measured by response time
- Benefits to member companies
 - Current schemes rely on static scheduling of partitions
 - Results could enable safe, yet dynamic partition scheduling

Project Tasks/ Deliverables

	Description	Date	Status
1	Exploration of existing research in the area of mixed-criticality systems and development/evaluation of new scheduling algorithms	Q1	Not yet started
2	Characterization of HSS and LSS tasks executing in multiple partitions on a single core with hypervisor support (XEN, KVM)	Q2	Not yet started
3	Characterization of HSS and LSS tasks executing in multiple partitions on a single core with hypervisor support (XEN, KVM)	Q3	Not yet started
4	Report writing and technology transfer	Q4	Not yet started

Technical Detail

Freescale QorlQ P4080

- Xen based Virtualization

Core Complex (CPU, L2 and Frontside CoreNet Platform Cache) Basic Peripherals and Interconnect Accelerators and Memory Control Networking Elements

- Can work in both para-virtualized and Fully-Virtualized (Hardware Virtual machine, HVM) mode
- Offers high performance in para-virualized mode
- KVM based Virtualization
 - Full virtualization solution for Linux
 - Designed as a loadable kernel module
- High-bandwidth communication & coherence infrastructure
 - Support for prioritization, bandwidth allocation, packet-level queue management and QoS scheduling