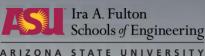


Towards Predictable Execution of Safety-Critical Tasks on Mixed-Criticality Multi-Core Platforms


Pls:

Harini Ramaprasad Dimitri Kagaris **Students:** Anthony Kulis Aishwarya Vasu Ashish Choudhari

Southern Illinois University Carbondale

Project Overview and Description

Motivation

• Multi-core architectures→high performance, low power

Problem

 Deterministic execution of highly safety-sensitive (HSS) tasks in presence of less safety-sensitive (LSS) ones is challenging due to shared resources

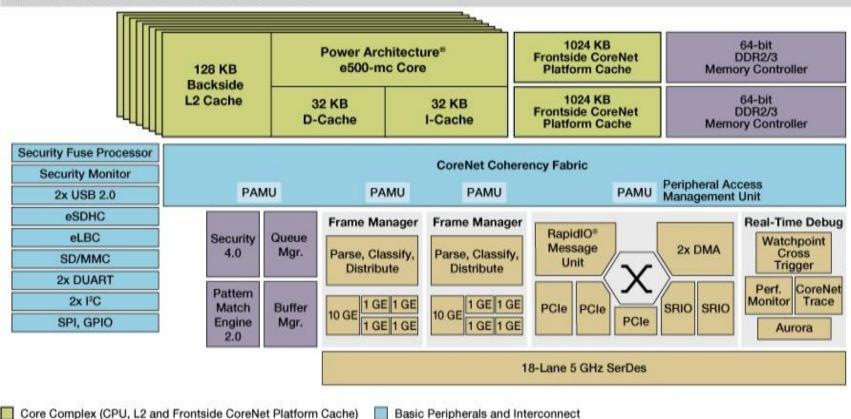
Viable Solution

 Virtualization (hypervisor) for isolation of HSS & LSS task sets

Project Description


 Comprehensive trade-off study of *determinism* vs *performance* of mixed-criticality tasks executing in the Freescale P4080 multi-core platform

Approach


- Explore time and space partitioning of resources among task sets executing within real-time and general-purpose operating systems
- Develop heuristics for time-efficient solutions
- Employ a two-stage approach
 - **Stage 1:** aggregate requirements of tasks within each OS and study determinism and responsiveness across OSs
 - **Stage 2:** study determinism and responsiveness of individual tasks within each OS
- Metrics for measuring success of resource allocation
 - HSS tasks: determinism of execution (satisfaction of timing and precedence constraints
 - LSS tasks: Quality-of-Service (QoS)
 - Experimental platform → *Freescale QorlQ P4080*

P4080 Development System

P4080

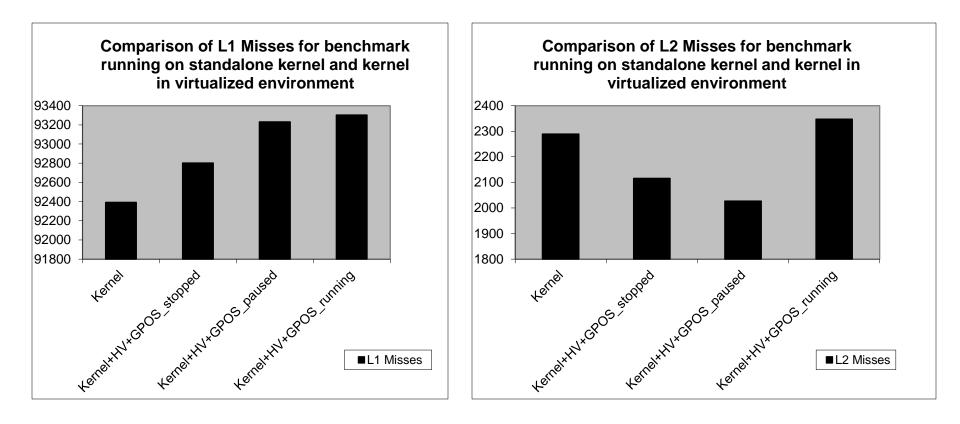
Picture from: 2004-2013 Freescale Semiconductor, Inc.

QorlQ P4080 Communication Processor

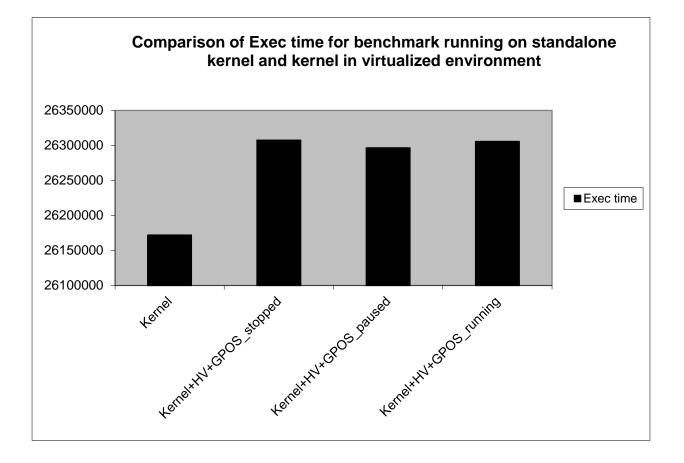
Accelerators and Memory Control

Networking Elements

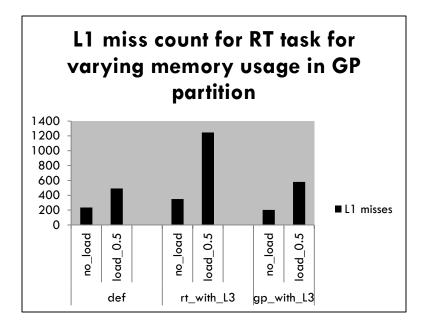
Technical Detail

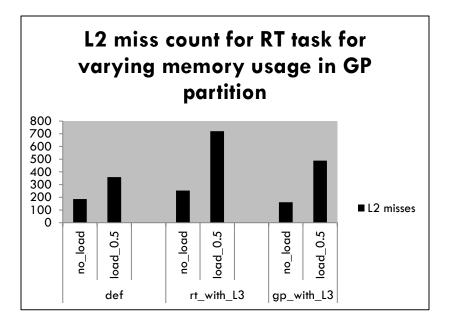

Freescale QorlQ P4080

- 8 high-performance cores with private L1, L2 and shared L3.
- Embedded hypervisor
 - Safe OS partitioning and support for partitioning cores, memory and I/O devices.
- High-bandwidth communication & coherence infrastructure
- Support for prioritization, bandwidth allocation, packet-level queue management and QoS scheduling
- Suitability of Freescale P4080 platform
 - Scheduling granularity is coarse which allows static partitioning of resources. Suitable for systems with HSS tasks where determinism is paramount
 - Hypervisor design exploits hardware mechanisms in cores to improve efficiency of virtualization. Easier to bound hypervisor interference across OSs
- Benchmarks for creation of mixed-criticality task sets
 - MRTC WCET benchmarks
 - EEMBC benchmarks: LMBench, CoreMark, perf_measure(RCI)

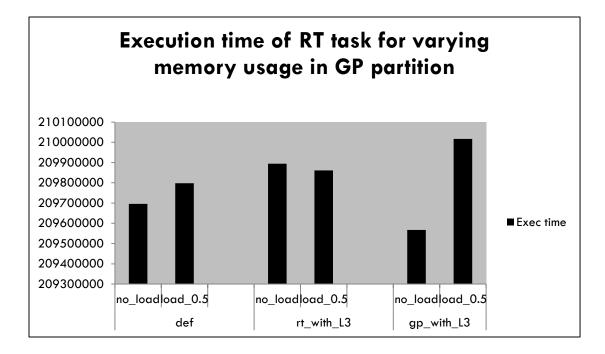

RT Performance comparison between Virtualized and non-Virtualized mode

- Study overheads due to the presence of hypervisor
 - Execute on standalone kernel and virtualized kernel
 - Study L1, L2 behavior and task execution times
- Study performance of tasks on RT partition
 - Execute HSS tasks in RT partition
 - Vary memory usage in GP partition and study effects on tasks in RT partition


L1 and L2 cache misses



Execution time



L1 and L2 cache misses for varying memory usage in GP partition

Execution time of RT task for varying memory usage in GP partition

Observations

- Problems
 - Hypervisor allows multiple partitions, but adds overhead
 - Execution time of tasks on RT partition (HSS tasks)
 - Increases when there is memory load on GP partition
 - Is sometimes inconsistent across multiple runs
- Potential solutions
 - Lock cache lines tasks on RT partition to improve predictability
 - Partition cache among guest RT & GP OSs to improve determinism and responsiveness of tasks on RT partition

References

- S. Xi, J. Wilson, C. Lu and C. Gill. "RT-XEN: Towards Real-Time Hypervisor Scheduling in Xen." In Proceedings of the 9thACM international conference on Embedded Software (EMSOFT), 2011.
- R. Fuchsen. "How to address certification for multi-core based IMA platforms: Current status and potential solutions." In Proceedings of the Digital Avionics Systems Conference (DASC), 2010.
- C. Ault. "Challenges of safety-critical multi-core systems." White paper, Wind River Research.
- P. Baltham, et al. "Xen and the art of Virtualization," In Proceedings of SOSP '03 19th ACM Symposium on Operating systems principles.
- Jun Zhang; Kai Chen; Baojing Zuo; Ruhui Ma; Yaozu Dong; Haibing Guan. "Performance analysis towards a KVM-Based embedded real-time virtualization architecture." 5th International Conference onComputer Sciences and Convergence Information Technology (ICCIT), 2010, pp. 421 – 426.
- M. Peshave. "High-Assurance Reconfigurable Multicore Processor Based Systems." In Proceedings of the 13thIEEE International Symposium on High-Assurance Systems Engineering (HASE), 2011.
- M.S. Mollison, J.P. Erickson, J.H. Anderson, S.K. Baruah and J.A. Scoredos. "Mixed-Criticality Real-Time Scheduling for Multicore Systems." In Proceedings of the 10thIEEE International Conference on Computer and Information Technology (CIT), 2010.
- Freescale Inc. "P4080: QorIQ P4080 Eight-Core Communications Processors with Data Path." <u>www.freescale.com/webapp/sps/site/prod_summary.jsp?code=P4080</u>devicesolutions.net "Topaz_i.MX25 CPU Module Technical Reference Manual." <u>http://devicesolutions.net/LinkClick.aspx?fileticket=hS62BQTuyhM%3D&tabid=305</u>
- Adventium Labs. "MiCART Mixed-Criticality, Real-Time Virtualization Support." www.adventiumlabs.com/?q=productsandservices/micart
- "Lmbench Tools for Performance Analysis." <u>http://www.bitmover.com/lmbench/</u>
- "MRTC WCET Benchmarks." <u>www.mrtc.mdh.se/projects/wcet/benchmarks.html</u>