

# All-optical embedded fiberoptic up/down-links for motor controller

PI: M. R. Sayeh, Department of Electrical and Computer Engineering, SIUC Students: M. Tafazoli, N.Davoudzadeh, and M. Ghasemi

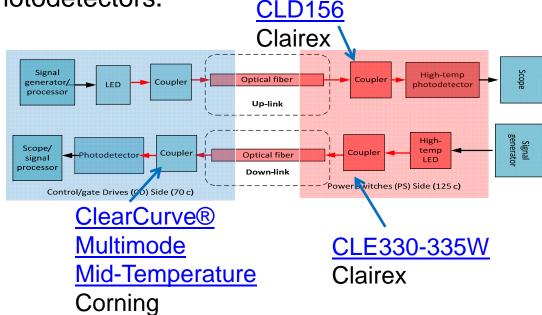




#### **Project Overview and Description**

# Project Description

Design of all-optical bi-directional linkage of the power switches (PS) and sensors which are embedded in a harsh environment (125°c) to the control/gate drives (CD) electronics in a benign environment (70°c).


| Gate Drive Requirement |           |  |  |  |
|------------------------|-----------|--|--|--|
| Von                    | 20v       |  |  |  |
| Voff                   | -5v       |  |  |  |
| Drive Power            | lw        |  |  |  |
| Peak Gate current      | 3A        |  |  |  |
| Drive frequency        | 100 kHz   |  |  |  |
| Min max duty cycle     | 5%-95%    |  |  |  |
| Ambient temp           | -55C 125C |  |  |  |

| Current Sensor Requirement |           |  |  |  |
|----------------------------|-----------|--|--|--|
| Max Amplitude              | 300 A     |  |  |  |
| Frequency                  | 200 kHz   |  |  |  |
| dl/dt                      | 100 A/us  |  |  |  |
| Ambient Temperature        | -55C 125C |  |  |  |

| Voltage Sensor Requirement |           |  |  |  |
|----------------------------|-----------|--|--|--|
| Max Amplitude              | 1000 V    |  |  |  |
| Frequency                  | 10 kHz    |  |  |  |
| dv/dt                      | 1000 V/uS |  |  |  |
| Ambient Temperature        | -55C 125C |  |  |  |

# Approach

- Implementation of optical links connecting the Control Drives (CD) plate to the Power Switches (PS) plate through the typical light sources (LEDs) located in CD side and the high-temperature photodetectors located in PS side.
- Implementation of the optical down-links from the harsh environment through the high-temperature LEDs to the benign environment (CD side) via photodetectors.



### **Project Status**

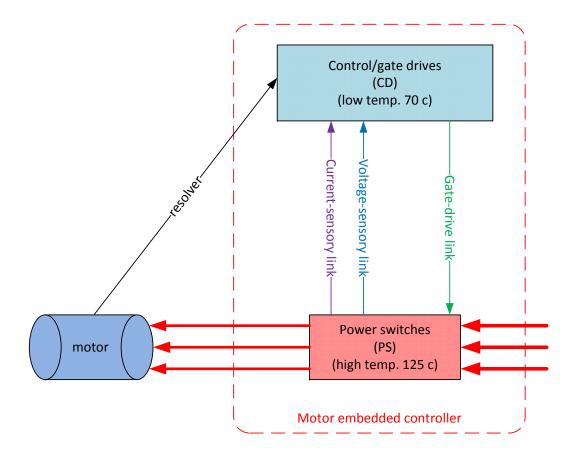
- Phase I:
- Study the existing off-the-shelf optical components for the up-link. done
- Study the existing off-the-shelf optical components for the down-link. done
- Prepare a proposal for a follow-up project to address an architecture of the optical uplink and downlink. – done

#### • Phase II:

 Design, build, and test the up-link and down-link according to the industry specifications. If needed, apply the back-error propagation network for reduce the unwanted disturbances. – planned

# **Project Tasks/ Deliverables**

|   | Tasks Description                                                                                                                        | Date                 | Status  |
|---|------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------|
| 1 | Design the up-link according to the industry specifications.                                                                             | Aug. –<br>Dec. 2013  | planned |
| 2 | Build the up-link where the detector is in the harsh environment.                                                                        | Aug. –<br>Dec. 2013  | planned |
| 3 | Test the up-link for noise and nonlinearity. If needed, apply the back-error propagation network for reduce the unwanted disturbances.   | Jan. – March<br>2014 | planned |
| 4 | Design the down-link according to the industry specifications.                                                                           | April – May<br>2014  | planned |
| 5 | Build the down-link where the LED is in the harsh environment.                                                                           | June –<br>July 2014  | planned |
| 6 | Test the down-link for noise and nonlinearity. If needed, apply the back-error propagation network for reduce the unwanted disturbances. | August<br>2014       | Planned |
| 7 | Report                                                                                                                                   | August<br>2014       | Planned |


• Deliverables: A report with the detail design, build, and test results of the fiber-optic links will be given.

#### **Executive Summary**

- This project is to design, build, and test an all-optical bi-directional embedded linkage for the power switches (PS) and sensors which are placed in a harsh environment to the control/gate drives (CD) electronics in a benign environment.
- The optical isolation of the high-temperature power switches from the control/gate drives will enhance the performance and cost-effectiveness of the state-of-the-art high power motors. The embedded optical links will provide a high-temperature tolerant, EM interference free, and light-weight linkage.
- High-temperature (< 225°c) AlGaAs photodiodes are used to convert the optical signal to electrical one.
- To convert the sensory data to the optical form, a GaAlAs high-temperature (<125°c) LED is directly modulated.

### **Technical Detail**

# Motor Controller



# **Technical Detail**

#### High Temperature Photodiode

#### Absolute Maximum Rating



| (TA = 25°C unless otherwise stated) |                |
|-------------------------------------|----------------|
| storage temperature                 | 65°C to +250°C |
| operating temperature               | 65°C to +225°C |
| lead soldering temperature(1)       | 260°C          |
| reverse voltage                     | 10V            |
| continuous power dissipation(2)     | 250mW          |

#### **Electrical Characteristics**

|        |                                          |     | ,    |     |       |                                                       |
|--------|------------------------------------------|-----|------|-----|-------|-------------------------------------------------------|
| symbol | parameter                                | min | typ  | max | units | test conditions                                       |
|        |                                          |     |      |     |       |                                                       |
| lsc    | Short-circuit current <sup>(3)</sup>     | 2.0 | 3.5  | -   | μA    | $V_{BIAS}$ = 0V, E <sub>e</sub> = 1mW/cm <sup>2</sup> |
| ID     | Dark current                             | -   | 0.1  | 1.0 | nA    | V <sub>R</sub> = 5V, E <sub>e</sub> = 0               |
| Rs     | Shunt resistance                         | -   | 3000 | -   | Meg.Ω | V <sub>R</sub> = 10mV                                 |
| VBR    | Reverse breakdown                        | 20  | -    | -   | V     | I <sub>R</sub> = 10μA                                 |
| Cj     | Junction capacitance                     | -   | 170  | -   | pF    | V <sub>BIAS</sub> = 0, f = 1MHz                       |
| ΘΗΡ    | Total angle at half sensitivity points   | -   | 70   | -   | deg.  |                                                       |
| tr, tr | Output rise and fall time <sup>(3)</sup> | -   | 1.0  | -   | μs    | R <sub>L</sub> = 50Ω, V <sub>R</sub> = 5V             |

note: 3. Radiation source is an aluminum gallium arsenide IRED with a peak emission wavelength of 850nm.

## **Technical Detail**

#### High Temperature LED



#### Absolute Maximum Rating

| SYMBOL                               | PARAMETER                             | MIN | MAX  | UNITS |
|--------------------------------------|---------------------------------------|-----|------|-------|
| Pd                                   | Power Dissipation                     |     | 200  | mW    |
| l <sub>f</sub>                       | Continuous Forward Current            |     | 100  | mA    |
| l <sub>p</sub>                       | I <sub>p</sub> Peak Forward Current   |     | 2.5  | Α     |
| Vr                                   | Reverse Voltage                       |     | 2    | V     |
| T <sub>STG</sub>                     | T <sub>STG</sub> Storage Temperature  |     | +125 | °C    |
| T <sub>o</sub> Operating Temperature |                                       | -55 | +125 | °C    |
| Ts                                   | T <sub>S</sub> Soldering Temperature* |     | +240 | °C    |

#### **Electro Optical Characteristics**

| SYMBOL         | CHARACTERISTIC                  | TEST CONDITIONS         | MIN | TYP | MAX | UNITS |
|----------------|---------------------------------|-------------------------|-----|-----|-----|-------|
| P <sub>o</sub> | Output Power                    | l <sub>f</sub> = 100 mA | 2.2 | 2.7 |     | mW    |
| V <sub>f</sub> | Forward Voltage                 | l <sub>f</sub> = 100 mA |     | 1.7 | 2.2 | V     |
| Vr             | Reverse Breakdown Voltage       | I <sub>f</sub> = 10 μA  | 2.0 |     |     | V     |
| λ <sub>p</sub> | Peak Wavelength                 | I <sub>f</sub> = 20 mA  | 830 | 850 | 870 | nm    |
| Δλ             | Spectral Bandwidth @ 50% (FWHM) | I <sub>f</sub> = 20 mA  |     | 35  |     | nm    |
| Ct             | Terminal Capacitance            | $V_r = 0V, f = 1MHz$    |     | 68  |     | pF    |
| tr             | Rise Time                       | I <sub>f</sub> = 20 mA  |     | 15  |     | nS    |
| t <sub>f</sub> | Fall Time                       | I <sub>f</sub> = 20 mA  |     | 15  |     | nS    |