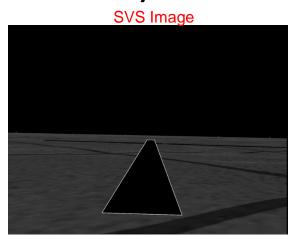


Registration and Fusion of EVS and SVS Runway Images for Embedded Systems

PI: Lalit Gupta, Ph.D Professor, ECE, SIUC Students: Ahmed Fadhil, Ph.D student, SIUC Raghuveer Kanneganti, Ph.D student, SIUC

Matthew M. Wilding, Ph.D Principal Engineering Manager, Rockwell Collins

Center for Embedded Systems | An NSF Industry/University Cooperative Research Center


CONFIDENTIAL

Project Overview and Description

Project Description

- The precise detection of runways is crucial for safely landing aircrafts because more than half of the accidents occur during the final approach and landing.
- The runway detection methodology being developed exploits information from enhanced vision system (EVS) and synthetic vision system (SVS) image frames of the runways.
- The goal is to generate image frames that contain enhanced runway and surrounding information by fusing the EVS and SVS frames.
- The resulting image frames can be incorporated into head-up displays (HUDs) to assist the pilot in landing the aircraft safely.

Approach

<u>Novelty</u>

- 1. Fusion of EVS and SVS images
- 2. Novel algorithms to:
 - (a) Extract features from EVS and SVS images
 - (b) Register EVS and SVS runway images
 - (c) Fuse the registered images so that the information from both images can be displayed optimally
 - (d) Simulate adverse weather condition images to objectively evaluate performance
- 3. Embed algorithms into multi-core processing environments for real-time applications

Benefits to member companies

- 1. Lead to the development of novel landing heads-up display systems
- 2. Will also be applicable to a vast range of other problems at Rockwell Collins involving image registration and image fusion.

Project Status

- Progress to date
 - Developed a novel approach to use the weather-invariant SVS image information to accurately detect the runway in the EVS image
 - Developed fusion methods to generate an EVS-SVS composite image which contains information from both images
 - Tested the methods developed using real EVS and SVS landing images provided by Rockwell-Collins
 - Developed a model to simulate varying degrees of atmospheric turbulence in EVS images to conduct objective performance evaluations

Project Tasks/ Deliverables

	Description	Date	Status
1	Preliminary EVS images processing and runway feature detection	Year 1	Completed
2	Preliminary SVS images processing and runway feature detection	Year 1	Completed
3	Preliminary EVS and SVS registration	Year 1	Completed
4	Preliminary EVS and SVS fusion	Year 1	Completed
5	Final EVS and SVS registration and fusion	Year 2	ongoing
6	Embed strategy into multi-core processing environments for real-time applications	Year 3	

Deliverables

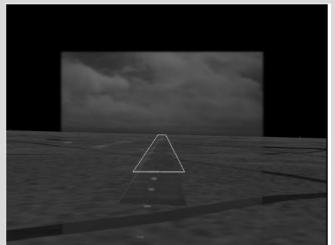
- Technical background into image fusion and registration
- Algorithms to register and fuse EVS and SVS images

Executive Summary

EVS and SVS Registration

- Line detection
- Hough transform
- Runway detection
- Horizon detection

EVS and SVS Fusion


- DWT based fusion rules
- Performance Evaluations

 Objective evaluations
 - Subjective evaluations

Original EVS

Registration & Fusion

