

Adaptive compressive sensing techniques for low power sensors

Haibo Wang and Spyros Tragoudas

Dept. of ECE Southern Illinois University Carbondale

Project Overview and Description

Project Description

 investigate the need, benefits, and circuit techniques to implement adaptive compressive sampling schemes in sensors with compressive sensing techniques.

Problem

- Most compressive sensing sensors assume the sparsity of sensor signals is relatively stable and hence use fixed compressive sampling schemes.
- The sparsity of certain sensor signals may exhibit significant fluctuations. Thus, adaptive compressive sampling potentially leads to more power-efficient implementations.

Approach

- Perform system-level simulation with using realistic sensor signals (Multi-parameter Intelligent Monitoring in Intensive Care database) to study the fluctuations of signal sparsity.
- Based on system-level power models, study the potential power saving by adaptively adjusting the compressive sampling schemes.
- Develop new circuit techniques to address the challenges on implementing adaptive compressive sensing (ACS).

Project Status

- Study of signal sparsity fluctuation is completed. It shows the validity of adaptive compressive sensing
- The investigation on potential power saving is complete. It indicates significant power can be saved by ACS
- Matlab simulation package for checking the applicability of ACS and potential power saving is available for member companies
- Current work focuses on the design of analog circuits to be used in ACS

Project Tasks/ Deliverables

	Description	Date	Status
1	Investigating the applicability of adaptive compressive sensing and demonstrating the potential power saving	8/13	Completed
2	Improve and encapsulate the matlab programs into a simulation package	10/13	completed
3	Design of analog wavelet transform circuit	03/14	On-going
4	Establishing the relation between circuit output and desirable sampling size; evaluating its effectiveness	07/14	

Executive Summary

- Compressive sensing is emerging as a new technique in ultra-low power sensor design.
- Adaptive compressive sensing can potentially result in further power saving.
- The project investigates the **need**, **benefits**, and **circuit techniques** to implement adaptive compressive sensing schemes.
 - An interesting application area of the developed technique is in the design of biosensors that are parts of body area network and communicating with mobile devices

Source: Baheti, P.K.; Garudadri, H.; "An ultra-low power pulse oximeter sensor based on compressed sensing," Sixth International Workshop on Wearable and Implantable Body Sensor Networks, pp. 144-148, 2009.