

Synthesis and Design of Robust Threshold Logic Circuits Developments at SIUC

Spyros Tragoudas, Haibo WangSIUCSarma VrudhulaASU

Project Overview and Description

• Work in Year 1

-Mobile or Current Mode Threshold Logic (CMTL) gate designs with minimum delay

-Threshold Logic (TL) circuits with minimum number of TL gates and minimum circuit delay

• Current focus:

Testability considerations in Current Mode Threshold Logic circuit implementations

- Novelty: A new fault model
 - Enhanced Transition Fault Model to ensure maximum delay at the TL gate
 - An ATPG to detect defects at the TL circuit
- Benefits to industry:
 - CMTL gates are easily manufactured and it is vital to efficiently identify delay defects

Project Status in Year 2

- Max Delay Transition Fault (MDTF) Model
 - Pattern sensitive model so that max delay is excited for each sensitized TF

• Developed an ATPG for the MDTF model for CMTL circuits

Project Status in Year 2

- At each pipeline level we select critical gate
 - **Example:** Gate 51 for 2nd stage
- ATPG is driven by the MDTF and an analytical model for the TL gate delay

Technical Detail on CML gates (Year 1)

- Current Mode Threshold Logic (CMTL) Gate
 - Divided in to Differential part and Sensor part
 - Differential part consists of network of threshold transistors and input transistors
 - Total current from threshold part is I_T
 - Total current from input part (active transistors) is I_A
 - $I_A > I_T$, then Vout is logic High; $I_A < I_T$, then Vout is logic Low
 - CLK is applied clock

Technical Detail on CML gates (Year 1)

Operation of CMTL gate

- Operation of CMTL gate clock based
- Clock is divided into two phases, equalization phase and evaluation phase
- Delay of CMTL gate is the sum of activation time T_A and boosting time T_B

Technical Detail on CML gates (Year 1)

- For a given input configuration, where T, N, and S are given
- Assume current flowing through an active minimum sized PMOS is I_P
- Current flowing through threshold side of CMTLG is $I_T = T \cdot I_P$
- Current flowing through Input side of CMTLG for N_A (active inputs) is $I_A = N_A \cdot I_P$
- Hence, worst case delay for
 - Logic 1: $(I_A I_T)$ should be minimum
 - Logic 0: $(I_T I_A)$ should be minimum

Technical Detail on CM L gates (Year 1)

The obtained equation for delay of CMTLG is approximated by

$$T_D = C_0 + C_1 \cdot S + C_2 \cdot \frac{1}{s} + \varepsilon$$

- $C_0 = \frac{N}{N_A} (C'_i + C'_T + C'_S) + \varepsilon_0$
- $C_1 = C'_S \cdot \left| \frac{1}{N_A} \frac{1}{T} \right| + \varepsilon_1$
- $C_2 = N \cdot C'_i + T \cdot C'_T + \varepsilon_2$
- C'_i , C'_T , C'_S are the unit capacitances of input weights, threshold weight, sensor
- N, N_A , T are the Number of inputs, number of active inputs, threshold value
- The obtained optimum sensor size by applying first derivative to T_D and equating it to zero is

$$S_{opt} = \sqrt{\left(\frac{N \cdot C_i' + T \cdot C_T'}{C_S' \cdot \left|\frac{1}{N_A} - \frac{1}{T}\right|}\right)}$$

Technical Detail on MOBILE gates (Year 1)

- Proposed an analytical model to approximate the transition time of a MOBILE TL gate
- The metric M is derived to approximate the transition time for an Ninput MOBILE TL gate

•
$$M = \frac{k_{r} \cdot (w_{T}^{R} - w_{T}^{r} + \sum_{i=1}^{I} (w_{i}^{R}) - \sum_{j=1}^{J} (w_{j}^{r})) + \sum_{i=1}^{I} (k_{0} \cdot \omega_{H} + k_{1} \cdot \omega_{H} \cdot w_{i}^{R} \cdot \mathbf{x}_{i}^{R}) + C_{L}}{k_{r} \cdot (w_{T}^{R} + w_{T}^{r} + \sum_{i=1}^{I} (w_{i}^{R} \cdot \mathbf{x}_{i}^{R}) + \sum_{j=1}^{J} (w_{j}^{r} \cdot \mathbf{x}_{j}^{r}))}$$

- The metric M can be used effectively to allocate weights that do not violate the functionality of TL gate and minimize the delay
- Minimizing the TL gate delay is done in three steps
 - Step 1: Obtain inequalities which satisfy the functionality of the given TL gate
 - Step 2: Obtain inequalities for each pattern so that the metric M is less than a user defined value
 - Step 3: Plug the above inequalities in ILP solver to obtain the weights for given TL gate with min delay

Technical Detail on MOBILE gates (Year 1)

TL circuit implementation using MOBILE element

- The positive and negative threshold RTDs are denoted by R_T and r_T
- The positive and negative input weights are denoted by $W^{R}_{\ \ }$ and $W^{r}_{\ \ }$
- The positive and negative input pattern are denoted by x_{\perp}^{R} and x_{\perp}^{r}

TLG Synthesis is currently bounded to a small number of inputs

- ILP based methods [Jha 05]
 - Limited by ILP
- Decomposition based methods [Vrudhula 08 & Vrudhula 10]
 - Requires input function in complete sum form
 - Requires a specific variable ordering for each node function
 - These tasks are either space or time consuming and the explicit algorithms are not scalable.

- Complete Sum (CS) : Sum of Prime Implicants.
- Variable Ordering (VO)
 - f_k : All prime implicants with exactly k number of literals
 - f_k^{xi} : Number of occurrences of an input variable x_i in f_k
 - VO is $x_i \approx x_j$, when $f_k^{x_i} = f_k^{x_j} \forall f_k$
 - VO is $x_i > x_j$, when $f_k^{x_i} > f_k^{x_j}$ in f_k with smallest value of k
- Binary decision Diagram (BDD)

A function represented in a BDD is a DAG where the Shannon decomposition is carried out at each node. It does not contain vertices with either isomorphic sub-graphs or with both outgoing edges pointing to same node. A ZBDD is a version of BDD in which the node is removed if its positive edge is directed to the False node

- The contribution of the new method is an implicit scalable implementation of [Vrudhula 08], [Vrudhula 10] that requires appropriate algorithms and DS.
- *CS* and *VO* are done implicitly.
- Several other algorithms are designed implicitly.
- The proposed implicit methods uses BDD or ZBDD.
- The Synthesis Cost (TLG count) is decreased up to 40% and on average around 20% when working on larger functions instead of using small functions to build large functions (as existing methods do).
- The circuit delay is decreased up to 10% and on average around 7%.
- The proposed implicit methods are time efficient.
- Handle up to functions of up to 50 input variables, where as existing methods can only handle up to 8 input functions.

- There is an increased need to test for manufacturing defects and in particular, for delay defects in TL Circuits
- Each input pattern results in different rising or falling delay value for CMTL gate
- The input patterns are grouped based on the delay values and are calculated using the equation shown previously
- The proposed ATPG method generates a pair of vectors which ensures :
 - Maximum transition delay at the selected gate using MDFT model
 - Propagates the error latched caused by the delay defect to an observable point

References

- [Jha 05]: R. Zhang, P. Gupta, L. Zhong, and N. K. Jha, "Threshold network synthesis and optimization and its application to nanotechnologies," *IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol.* 24, no. 1, pp. 107–118, Jan 2005.
- [Vrudhula 08]: T. Gowda and S. Vrudhula, "Decomposition based approach for synthesis of multi-level threshold logic circuits," *In Proc. Asia and South Pacific Design Automation Conference, pp. 125-130, Mar 2008.*
- [Vrudhula 10]: T. Gowda, S. Vrudhula, N. Kulkarni, and K. Berezowski, " Identification of threshold functions and synthesis of threshold networks," *IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 30, no. 5, pp.665-677, May 2011.*
- C.B. Dara, T. Haniotakis, S. Tragoudas, "Delay Analysis for an N-Input Current Mode Threshold Logic Gate," *IEEE Computer Society Annual Symposium on VLSI (ISVLSI), 2012, pp.344,349, 19-21 Aug. 2012.*
- C. B. Dara, S. Tragoudas, T. Haniotakis, "A Metric for Weight Assignment to Optimize the Performance of MOBILE Threshold Logic Gate," *IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems* (*DFT*), pp.131-138, 3-5 Oct. 2011.