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Project Overview and Description

 Project Description

» Reducing the complexity of electrical wiring
» Improving the operational efficiency

e Problem

» Propagation model for cabin environment
» Assurance of high reliability
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Approach

« Signal mapping considering distinct
characteristics of cabin environment

« Using beamforming technology to improve
efficiency and reliability

* Providing guideline and strategy for deployment
of nodes Iin cabin environment
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Project Status

Date Description

Sept. 16 Introduction to Beamforming

Sept. 25 Smart Antenna based on Beamforming

Oct. 2 Adaptive Beamforming Algorithm

Oct. 9 Path Loss in Aircraft Environment

Oct. 23 Radio Propagation in Aircraft Environment — Path Loss

Oct. 30 Radio Propagation in Aircraft Environment —
Shadowing /Fading

Nov. 13 Beamforming Simulation

Nov. 20 Indoor Signal Propagation Simulation

Dec. 2 2-D Cabin Simulation
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Project Tasks/ Deliverables

Description Date Status

1  Choose beamforming technology to improve efficiency Oct. 2 Done
and reliability

2 Set up wireless signal propagation model for cabin Oct. 30 Done
environment

3 Beamforming simulation with variable antennas and Nov. 13 Done
iIncoming signal directions

4  2-D aircraft cabin environment simulation using multi- Nov. 20 Done
wall method

5 Path loss simulation in seat, arm & back, and top levels Dec. 2 Done
in cabin area with different number of APs

6 Beamforming simulation combined with signal To be
propagation in cabin environment cont.
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Executive Summary

° Th eoretlcal preparatlon Beam-forming application in cabin
— Propagation model
— Beamforming application

Concentrated
Power & Angle

e Simulation work
— Beamforming simulation
— 2-D cabin environment
— Path loss simulation

EMERGENCY

Concentrated
Power & Angle

In cabin area
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Beamforming Technology

Energy waste Interference

Omni-antenna
coverage

Coverage

Concentrated

Area

_ power & angle
Beamforming

coverage
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Beamforming Simulation
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Beamforming Pattern with Variable Antennas
and Incoming Signal Directions

4 antennas
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Beamforming Antenna

e Over 3X increase in performance and range
e 8X expanded coverage

e Stabilized wireless network performance, for picture-
perfect video streaming and crystal-clear voice
communications

* Maximized power efficiency

* Interference mitigation

* Unlike omni-directional antennas that radiate signals
in all directions, BeamFlex directs transmit energy
towards the best path to the receiving device. And
unlike fixed-positioned directional antennas,
BeamFlex dynamically configures its "beam™ on a
per-station, per-packet basis, to achieve omni-
directional coverage.

e hitp://www.youtube.com/watch?v=06-81 wCkiIKM

The Ruckus Wireless 7962
(19 antenna elements)
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Log-distance Path Loss Model

Log-distance path loss model is a generic model and an extension to Friis Free space model.

It is used to predict the propagation loss for a wide range of environments, whereas, the Friis
Free space model is restricted to unobstructed clear path between the transmitter and receiver.

Py
Transmitter Py Py Py
distance
| b
0 do dl d2

E—

ds Far Field Region

In the far field region of the transmitter (d = d,), if PL(d,) is the path loss measured in dB at a
distance d, from the transmitter, then the path loss (the loss in signal power measure in dB
when moving from distance d, to d ) at an arbitrary distance d >d, is given by

_ _ d
PL(dB) = PL(d,) + 10nlog T + x,
0
where:  nis the path loss exponent
dy is the close-in reference distance
d is the T-R separation distance

X, is a zero-mean Gaussian distributed random variable (in dB) with standard
deviation — o.
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Shadowing

Log Normal Shadowing model
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Moraitis, Nektarios, et al. "Propagation measurements and comparison with EM
techniques for in-cabin wireless networks," EURASIP Journal on Wireless
Communications and Networking, 2009.
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Rayleigh Fading

* Rayleigh fading models assume that the magnitude of a signal that has
passed through a transmission medium will vary randomly, or fade,
according to a Rayleigh distribution — the radial component of the sum
of two uncorrelated Gaussian random variables.
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Seat

Cabin Environment in 2-D
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Multiwall model, L0 = 40.20, n=2.00
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Multiwall model, LO = 40.20, n=2.00
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Multiwall model, LO = 40.20, n = 2.00 Multiwall model, LO = 40.20, n=2.00
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