

Adaptive compressive sensing techniques for low power sensors

Haibo Wang and Spyros Tragoudas

Dept. of ECE **Southern Illinois University** Carbondale

Illinois

ARBONDALE

Project Overview and Description

Project Description

investigate the need, benefits, and circuit
techniques to implement adaptive compressive
sampling schemes in sensors with compressive
sensing techniques.

Problem

- Most compressive sensing sensors assume the sparsity of sensor signals is relatively stable and hence use fixed compressive sampling schemes.
- The sparsity of certain sensor signals may exhibit significant fluctuations. Thus, adaptive compressive sampling potentially leads to more power-efficient implementations.

Approach

- Perform system-level simulation with using realistic sensor signals (Multi-parameter Intelligent Monitoring in Intensive Care database) to study the fluctuations of signal sparsity.
- Based on system-level power models, study the potential power saving by adaptively adjusting the compressive sampling schemes.
- Develop new circuit techniques to address the challenges on implementing adaptive compressive sensing (ACS).

Project Status

- Study of signal sparsity fluctuation is completed. It shows the validity of adaptive compressive sensing
- The investigation on potential power saving is complete. It indicates significant power can be saved by ACS
- Matlab simulation package for checking the applicability of ACS and potential power saving is available for member companies
- Current work focuses on the design of analog circuits to be used in ACS

Project Tasks/ Deliverables

	Description	Date	Status
1	Investigating the applicability of adaptive compressive sensing and demonstrating the potential power saving	8/13	Completed
2	Improve and encapsulate the matlab programs into a simulation package	10/13	completed
3	Design of analog wavelet transform circuit	03/14	On-going
4	Establishing the relation between circuit output and desirable sampling size; evaluating its effectiveness	07/14	

Executive Summary

- Compressive sensing is emerging as a new technique in ultra-low power sensor design.
- Adaptive compressive sensing can potentially result in further power saving.
- The project investigates the need, benefits, and circuit techniques to implement adaptive compressive sensing schemes
 - An interesting application area of the developed technique is in the design of biosensors that are parts of body area network and communicating with mobile devices

Source: Baheti, P.K.; Garudadri, H.; "An ultra-low power pulse oximeter sensor based on compressed sensing," Sixth International Workshop on Wearable and Implantable Body Sensor Networks, pp. 144-148, 2009.

Signal sparsity

– Sensor signal X (X has N terms) is projected to another domain by matrix Ψ :

$$X = \Psi \cdot \alpha$$

- The projected values is represented by vector $\boldsymbol{\alpha}$
- If only K terms in α are significant and K<N, signal X has sparse representation in domain Ψ

- Incoherent sampling
 - Sensor signal X is processed by another matrix operation (incoherent sampling)

$$Y = \Phi \cdot X$$

- The size of Φ is N×M and Hence the size of Y is M
- If X has a sparse representation with K significant terms in Ψ domain and Φ and Ψ are incoherent, and the minimum size of Y is:

$$M = \mathcal{O}(K \log \frac{N}{K})$$

If K<<N, then M<N. Thus, sensing or sending signal
Y, instead of X, will lead to low-power operations

- Signal recovery
 - Receiver solves the α values from the received Y signal by:

$$Y = \Phi \cdot \Psi \cdot \alpha$$

- Since α has N terms and Y has only M (M<N) terms, there exists more than one solutions
- However, the solution with the least number of significant terms in α is often the right solution. Such a solution can be searched by convex optimization techniques
- Once α is solved, sensor signal X can be reconstructed by:

$$X = \Psi \cdot \alpha$$

- Investigating the fluctuations of signal sparsity
 - Matlab/Simulink models are developed to emulate compressive sensing operations.
 - The Ψ matrices used in the models are either Gabor or wavelet matrix
 - Realistic sensor signals from MIMIC (Multi-parameter Intelligent Monitoring in Intensive Care) database are used in simulation.

 Results: Variations of signal sparisty and measurement sizes

Signal	Block	1	2	3	4	5	6
Fetal ECG	М	357	597	449	419	329	407
	K	30	37	7	6	54	21
Con	М	443	961	977	857	969	385
Cap	К	114	116	97	178	116	41
Stress	М	191	209	201	187	575	193
	K	30	36	35	28	15	34
PPG	М	231	118	169	141	255	237
	K	38	41	45	42	38	36

• Results:

Variation Between the Maximum and Minimum Number of Samples for Recovery

 Wireless transmitter model used in estimating power saving by ACS

Power model parameter values used in this study

Circuit Block	Circuit Parameters	Values
	Ν	8
DAC	С	50fF
DAC	K	0.05
	f_conv	100KHz
	fc	40KHz
Filtor	Q	5
Filler	SNR	50dB
	η	1×10 ⁵
	k _{mixer}	10×10 ⁻³
Mixer	G	0dBm
	NF	10dBm
	A ₁	1.4×10 ⁻⁶
DLI	A ₂	1.6×10 ⁻⁴
FLL	f _{LO}	2.4GHz
	f _{ref}	22MHz
	A	2.3
VCO	f _{osc}	2.4GHz
	L	6nH
DA	η _{PA}	28%
FA	P _{out}	-3dBm

13

Simulation flow and results

Analog wavelet transform (WT) circuit

– Using a group of filters which correspond to the wavelet functions with different scale σ values

- Difference between ours and others' approaches (why can we make it ultra-low power?)
 - Use circuit outputs as indicators for signal sparsity, don't reconstruct the original signal from circuit outputs
 - Relaxed accuracy requirement; don't have to be always on
 - Tolerance to "false positive results" (indicating signal dense, but sparse)

15

Generating sparsity indication signal

(a)

(b)

Establishing the correlation:

