RECENT PROGRESS AND FUTURE PROSPECTS FOR MAGNETORESISTIVE RAM TECHNOLOGY

Jon Slaughter

Everspin Technologies, Inc Chandler, Arizona USA

Center for Embedded Systems IAB Meeting Chandler, Arizona, 22 Jan 2013

- MRAM overview
- Field-switched MRAM: "Classical Spintronics"
- Spin-torque MRAM: Spin-Torque-Transfer Spintronics
- Critical device properties and effect of materials
- Status: Fully-functional 64Mb, DDR3 ST-MRAM
- Summary

Everspin – The MRAM Company

- MRAM Magnetic Random Access Memory
 - Fastest non-volatile memory with unlimited endurance
- Only company to have commercialized MRAM
- Founded 2008, 100%+ annual revenue growth
- Fundamental & essential MRAM IP
 - 200+ US patents granted, 600+ WW patents & applications
- Backed by top-tier VC firms

MRAM - Technology Comparison

Toggle Write

Spin-Torque Write

- Write with magnetic fields from current-carrying lines.
- High-performance, nonvolatile, unlimited endurance
- AIOx / NiFe-based MTJ
- In volume production

- Write with spin polarized current passing through the MTJ.
- Lower write current enables higher memory density
- □ MgO / CoFeB-based MTJ
- 64Mb sampling to customers

4

Everspin Toggle MRAM Attributes

Parameter	Capability
Non-volatile capability	 Data retention >20 years
Performance	 Symmetric read/write – 35ns
Endurance	Unlimited cycling endurance
CMOS integration	 Easily integrates in manufacturing back-end Compatible with embedded designs No impact on CMOS device performance
Temperature range, reliability	 -40°C < T < 150°C operation demonstrated Intrinsic reliability > 20 years lifetime at 125°C
Soft error immunity	 MRAM cell radiation tolerant Soft error rate from alpha radiation too low to measure (<0.1 FIT/Mb)
Environmentally friendly	 No battery, RoHS compliant, low power

MRAM Market Segments

 Storage & Server • RAID, NAS, SAN & DAS Storage • Rack & Blade Servers 	MRAM benefits Better Reliability Fast Power Off/On No Batteries/Caps Lower TCO
Energy & Infrastructure Single-Board Computer, Routers, POS, Gaming SmartGrid, SmartMeter, Solar, Wind	Better Reliability Industrial Temp No Batteries/Caps Lower TCO
 Automotive and Transportation Power Train, Brakes, Safety, Data Logging MultiMedia, Navigation, Camera, Black Box 	Better Reliability Automotive Temp Endurance Lower TCO

Current MRAM products

All Based on Toggle Switching

16-bit I/O		
Part Number	<u>Density</u>	Configuration
MR4A16B	16Mb	1Mx16
MR2A16A	4ivid	256Kx16
MR0A16A	1Mb	64Kx16

8-bit I/O		
Part Number	<u>Density</u>	Configuration
MR4A08B	16Mb	2Mx8
MR2A08A	4ivib	512Kx8
MR0A08B	1Mb	128Kx8
MR256A08B	256Kb	32kX8
MR0D08B	1Mb	128KX8, 1.8v I/O
MR256D08	256Kb	32KbX8, 1.8v I/O

SPI I/O		
Part Number	Density	Configuration
MR25H40	4Mb	512Kx8
MR25H10	1Mb	128Kx8
MR25H256	256Kb	32Kx8

48-BGA

x8 Asynchronous parallel I/O

- x16 Asynchronous parallel I/O
- x8 Asynchronous parallel 1.8V I/O

8-DFN

44-TSOPII, 54-TSOP

- x8 Asynchronous parallel I/O
- x16 Asynchronous parallel I/O
- SPI-compatible serial I/O
- 40 MHz; No write delay

32-SOIC

• x8 Asynchronous parallel I/O

Extended	-40 to +105 °C
Automotive	-40 to +125 °C
Commercial	0 to +70 ⁰C
Industrial	-40 to +85 °C

Tunneling Magnetoresistance

The tunneling is spin-dependent: spin-up and spin-down have different probabilities.

First MTJ material with MR>10%: AlOx based in 1995

- Miyazaki & Tezuka, JMMM 139
- Moodera, et al. PRL 74

First MTJ material with MR~200% in 2004

- Parkin, et al., Nat. Mat. 10.1038
- Yuasa, et al., Nat. Mat. 10.1038

$$MR = \Delta R/R_{low}$$
$$MR \sim 2P_1 \bullet P_2/(1-P_1 \bullet P_2)$$

Discovery to Commercial Application: TMR

- Magnetic Tunnel Junctions with high Tunneling Magnetoresistance in 1995^{*} led to first commercial MRAM in 2006⁺
 - Tunneling resistance can be matched to CMOS transistors
 - Also used in HDD sensors

*J.S. Moodera, et al., PRL 74, 1995 *T. Miyazaki and N. Tezuka, JMMM 139, 1995

+ Freescale/Everspin 4Mb Toggle MRAM

Discovery to Commercial Application: STT

• Two major developments spurred the second wave of MRAM development

- 1. Spin-torque demonstrations
- M. Tsoi, et al. 1998 and J.A. Katine, et al. 2000
- 2. MTJ material with MR~200%
- Parkin, et al. and Yuasa, et al. 2004

Technology Demonstrations Include

- M. Hosomi, et al., IEDM 2005
- R. Beach, et al. and T. Kishi, et al., IEDM 2008
- S. Chung, et al. and D. C. Worledge, et al., IEDM 2010
- W. Kim, et al., IEDM 2011

• First Product Sampling: Everspin 64Mb 2012

Recent Progress in Magnetic Switching

MgO/CoFeB-based MTJs with perpendicular magnetization

- S. Ikeda et al., (2010)
- D.C. Worledge, et al., (2011)
- Very active area of R&D worldwide
- Other recent discoveries show potential for continued rapid improvement
 - Voltage-controlled interface anisotropy
 - Voltage-controlled magnetism
 - Spin Hall effect

- MRAM overview
- Field-switched MRAM: "Classical Spintronics"
- Spin-torque MRAM: Spin-Torque-Transfer Spintronics
- Critical device properties and effect of materials
- Status: Fully-functional 64Mb, DDR3 ST-MRAM
- Summary

1 T-1 MTJ MRAM Write Operation

Conventional MRAM Bit Selection

• Bit disturb margin

- Need many sigma separation between unselected and ½-selected distributions
- All bits along selected current lines have reduced energy barrier during programming
 - Susceptible to disturb from thermal agitation

Conventional Operating Region

- Challenge: Programming window sits between 2 distributions.
- Challenge: Thermal activation shrinks the window.

16

Toggle Write Operation

Advantages: Eliminates disturb - Large operating window

US Patent 6,545,906, Savtchenko et al. (2003)

MRAM Company

Toggle-Bit Selection

- High bit disturb margin
- All bits along ½-selected current lines have increased energy barrier during programming

Toggle-bit Array Characteristics

TECHNOLOGIES The MRAM Company

19

- MRAM overview
- Field-switched MRAM: "Classical Spintronics"
- Spin-torque MRAM: Spin-Torque-Transfer Spintronics
- Critical device properties and effect of materials
- Status: Fully-functional 64Mb, DDR3 ST-MRAM
- Summary

Spin-Torque MRAM

Use spin momentum from current to change direction of S, m.

=*Torque*

barrier to pass the required large current density, $Jc > 1 MA/cm^2$

Desired Scaling of Switching Current

- Today: Reduce Jc for reliability and smaller transistors
- Continued scaling: maintain energy barrier and manage distributions while reducing Jc

Scaling should maintain or reduce Jc, then:

 I_C scales favorably to transistor current

Maintain Eb/kT for nonvolatility and control distributions

22

I_C scaling with bit size

 $I_c \propto \text{Area} \Rightarrow$ $J_c \approx \text{constant over}$ range of bit sizes

•Data points = Ic for different bit sizes

•Bit width: 120nm \rightarrow 50nm •Aspect ratio: 1.7 \rightarrow 3.5

But need to maintain energy barrier for nonvolatility!

Paths to lower I_c

• For in-plane magnetization:

See for example, Katine & Fullerton, Journal of Magnetism and Magnetic Materials 320 (2008) 1217–1226

Paths to lower lc

• For in-plane magnetization:

Ic with Perpendicular Magnetization

Material with large perpendicular anisotropy can offset the demag. field

Two cases:

- 1. $H_{\perp} < 4\pi M_s$, in-plane with perpendicular assist
 - Energy barrier to reversal dominated by bit shape
- 2. $H_{\perp} > 4\pi M_s$, perpendicular magnetization
 - Energy barrier to reversal dominated by H_{\perp}
 - Ic ~ Energy Barrier

Reduced In-Plane Ic with Perpendicular Assist

Material with large perpendicular anisotropy can offset the demag. field

For bits with: AR=2, 4π M=8kOe, E_b/kT=52

Engineered materials for Low J_c

- Pulsed Permeameter measurements show magnetic oscillations in the material
 - Low frequency indicates low perpendicular anisotropy
- Decay rate of oscillation shows magnitude of damping

Scaling Perpendicular ST-MRAM Devices

Advantages over in-plane devices

- E_b depends on crystalline or interface anisotropy, not shape
- Circular bits may allow decreased cell size
- Materials with large H_{\perp} enable acceptable E_b for very small bits
- Remaining challenges for perpendicular devices

 $I_c \propto MV(H_{\perp} - 4\pi M)$

 $E_{b} = MV (H_{\perp} - 4\pi M)/2$

- $I_c \propto E_b \Rightarrow$ current does not scale if E_b is maintained
 - Need further improvements to continue scaling, such as very low damping

- MRAM overview
- Field-switched MRAM: "Classical Spintronics"
- Spin-torque MRAM: Spin-Torque-Transfer Spintronics
- Critical device properties and effect of materials
- Status: Fully-functional 64Mb, DDR3 ST-MRAM
- Summary

Magnetoresistance Signal and Distributions

 $MR = \Delta R/R_{low}$, $\Delta R = R_{high} - R_{low}$

- Signal = $R_{cell} R_{ref}$
- $\frac{1}{2}$ of ΔR available for sensing
- Circuit works at finite bias
- MR is reduced by bias dependence of MR
- Must sense all bits in the array
- Circuit must work with bits in tails of the R distribution

Array: R_{cell} Histogram

Cell Resistance ($k\Omega$)

Resistance distribution reduces useable MR.

For six-sigma yield in the array, need: $\Delta R/2 > 6\sigma$

Uniformity of Tunneling Current Density

- Tunneling current density has tunneling "hot spots"
 - Result is statistical variation in bit resistance

Tunneling AFM and Standard AFM of the same area

 $5\mu m \times 5\mu m$

Defect model for resistance and breakdown distributions

Each defect has associated

Breakdown mediated by weakest defect found in device

Read Distribution within an Array

Resistance of bits in a 4Mb array

SPIN-TORQUE SWITCHING QUALITY

Single-bit data from probe of short-flow process wafers (not integrated with CMOS) with optimized structures and custom electronics for high-speed pulsing

Integrated memory array data from 16Mb test vehicle fabricated in 90nm CMOS logic process.

Distribution Considerations

- Separation of V_C & V_{bd}
 - **Reliable switching**
 - Tunnel barrier reliability

Separation of V_{read} & V_C

- Avoid read-disturb errors
- Bigger issue for smaller bits, lower I_C
- **Switching distribution** ۲ width increased by:
 - Shorter write pulses
 - Smaller bits
 - Extrinsic switching behavior

Separation =
$$\frac{V_{bd} - V_C}{\sigma_{avg}}$$

Improved Switching in Arrays at High Speed

Optimized free layer material has better high-speed behavior

- Less increase in switching sigma for short pulses
 - Reduced single-bit sigma and less bit-to-bit variation
- Less rise of Vc for short pulses
- Fewer bits with anomalously high error rate

Data for integrated arrays of ~80nm bits

Reliable High-Speed Switching

- Reliable high-speed switching with Everspin's engineered MTJ material
 - Reliable switching down to 2ns
- Standard CoFeB free layers have degraded switching at higher speed (shorter pulses)
 - Extrinsic bits cause trouble even for high applied bias.

38

Switching Distribution Anomaly

- Some bits have non-Gaussian switching distributions
 - 'Ballooning' effect results in higher write voltage requirement
 - Defect related. Caused by intermediate metastable magnetic state
 - Worse at high speed, not all bits exhibit this behavior

Single-bit switching distribution for 20,000 write cycles Pulse width = 25ns

Continued improvements in switching quality

Optimized free layer improves both single-bit switching quality and bit-to-bit variation

Write Error Rate (WER) out of 10,000 attempts for 9 bits, ~ 85nm x 240 nm , with write pulses of 25ns duration applied P-to-AP (V<0) and AP-to-P (V>0). The black line is a fit of the experimental data assuming a Gaussian distribution of WER.

Putting it all together

 Demonstrated large separation of switching and breakdown in16 kb arrays integrated with CMOS

- Large separation $>30\sigma$
- Key figure of merit for:
 - functionality
 - manufacturability
 - reliability

85 nm wide bits

- MRAM overview
- Field-switched MRAM: "Classical Spintronics"
- Spin-torque MRAM: Spin-Torque-Transfer Spintronics
- Critical device properties and effect of materials
- Status: Fully-functional 64Mb, DDR3 ST-MRAM
- Summary

90nm DDR3 ST-MRAM Product

- 90nm Bulk Standard Process CMOS
- 4-Layer Metal + AI RDL
- 1.5V DDR3-1600, Ball Configuration
- Standard CAS Latency specs
- Standard 8 bank architecture
- x4, x8, or x16 I/O configuration

IEDM Conference, San Francisco, December 2012

Switching in the 64Mb ST-MRAM

Normal distribution of switching voltage

Operating Region for 1M March 6N Tests

Applied Bias (nrm)

IEDM Conference, San Francisco, December 2012

Reading the 64Mb ST-MRAM

Good read signal window – margin for speed

Read Distribution from our 64Mb ST-MRAM

IEDM Conference, San Francisco, December 2012

Conclusions

- Toggle MRAM is a highly reliable, high-performance, nonvolatile memory, with unlimited endurance
 - Product densities ranges from 256kb-16Mb
- Spin-Torque MRAM technology is advancing to enable higher densities and lower power
- Continued developments and innovation in nanomagnetic switching provide a strong R&D pipeline for scaling and performance improvement.
- Demonstrated a fully-functional 64Mb DDR3 ST-MRAM and delivered working samples to customers
 - Read and write with no errors
 - Gaussian switching distributions to ppm level
 - Arrays with >30-sigma separation of Vc and Vbd

